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A dynamical definition of pressure for grand-canonical Gibbs measures 
in bounded regions A is rigorously discussed: It measures the momentum 
transferred to the walls of the container by the elastically colliding particles. 
The local pressure P(r, OA) so obtained is proportional to the temperature 
and the local density at the boundaries of A. This allows us to obtain a 
rigorous proof of the virial theorem of Clausius. In this picture the thermo- 
dynamic pressure Pa(A) is obtained as the average of P(r, OA) on OA. Its 
relationship with the usual equilibrium pressure P~ = (/~IA]) -1 In Z• 
(ZA is the grand-canonical partition function) is then discussed. In the 
particular case in which the regions A are spheres, it is shown that Pa(A) 
converges in average so that, if the limit of Pa(A) exists, it equals peq, the 
thermodynamic limit of the equilibrium pressure Peq(A). Finally, con- 
vergence of Pa(A) is proven to hold in the particular case of one-dimer]- 
sional hard cores in the absence of phase transitions. 

KEY WORDS: Rigorous statistical mechanics; Gibbs states; pressure; 
virial theorem of Ctausius; f inite-volume dynamics; special f lows under a 
function. 

1. I N T R O D U C T I O N  A N D  M A I N  R E S U L T S  

In  th i s  p a p e r  we  d i scuss  a de f in i t i on  o f  t he  t h e r m o d y n a m i c  p r e s s u re  w h i c h  

invo lves  pu re ly  m e c h a n i c a l  c o n s i d e r a t i o n s .  

W e  s t u d y  classical  c o n t i n u o u s  s y s t e m s  in  b o u n d e d  r eg ions  A a n d  we 
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assume that their equilibrium states are described by grand-canonical Gibbs 
measures. The usual assumption in statistical mechanics (1~ for the pressure 
P,~q is 

PX q -- (Ia[/~) -1  In ZA (1) 

where/3- ~ = k T  and Zn is the grand-canonical partition function. [Actually, 
Eq. (1) can be derived from thermodynamic and information theory con- 
siderations. (~] 

On the other hand, the pressure is physically defined as the external action 
necessarFto constrain the system in a bounded region. It is a standard pro- 
cedure (2~ in the kinetic theory of gases to identify it as the momentum 
transferred from the colliding particles to the walls in the limit in which 
these are assumed to be perfectly elastic. This opens the way to many classical 
theorems which relate the pressure to other thermodynamic observables, as 
in the virial theorem of Clausius. (2,a~ 

It is the purpose of this paper to examine this procedure in the framework 
of rigorous statistical mechanics and to discuss the relationship between the 
so-defined dynamical pressure pa  and the usual equilibrium pressure pea, 
Eq. (1). 

The first problem one is confronted with is the definition of dynamics 
for particles moving in nonsmooth fields. More precisely, we have the follow- 
ing. 

Definition 1.1. We study a system of point particles with mass m in 
~v pairwise-interacting via a stable, tempered ~ C 2 potential ~o(r). The 
corresponding (grand-canonical) Gibbs state for the bounded (Lebesgue- 
measurable) region A is the probability measure t~A on the phase space XA 
(see Definition 2.1). 

The formal differential equations of motion are 

d 2 
m ~ q~(t) = - ~ , j  ~ ~(Iq, - qil) + elastic collisions on 8A (2) 

q,(0) = q~, t~,(0) = p, /m (q~ "" qn')(P~ "" P~) E X a  (3) 

Problems arise from the impulsive forces due to collisions against the elastic 
walls. They are studied in Ref. 4, where the following theorem is proved 
(an outline of the proof is given in the appendix). 

Theorem 1.1. Let the region A be regular (see Definition 2.1). Then there 
exists a set of initial configurations with full tzA measure for which a time 
evolution S ( t )  is defined for t ~ R. S ( t )  satisfies the following properties: 

(i) No particle ever hits aA in its singular region. For any finite time 
interval a bounded number of collisions occurs. Between collisions the 
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evolution satisfies the differential equations of motion and during collisions 
the particles are elastically reflected, Eqs. (2) and (3). 

(ii) t~A is S-invariant. 

By use of Theorem 1.1 we can define the following function: 

rrn(t, x) = ~ ~ 2[S(t')pdnA[S(t')q~] 
O <~U ~ i~(~') 

where 

~_ OA, fY,(t) = {i[S(t)q~ G f~, q~ e A} (4) 

and nA(q) is the unit inward vector orthogonal to ~A in q ~ ~A. Therefore 
7r,(t, x) gives the total momentum transferred to the subregion ~q of ~A by 
the particles of x due to collisions in the time interval (0, t). 

Theorem 1.2. For  every t >/ 0 and every regular ~ _ aA the function 
7rn(t, x) is tzA-integrable and there exists in 0A a function P(r, 0A) not de- 
pending on ~ such that 

t -:  fx dt~A(x)~r~(t,x) ---- (~ (dr)• ~A) (5) 
A 

where (dr) • is the orthogonal projection of dr on OA. Therefore P(r, 8A) is 
the dynamical local pressure in r ~ ~A. Further if p(r, A) represents the local 
density, then 

P(r, 8A) = p(r, A) (6) 

By Theorem 1.2 we obtain for the dynamical pressure on 0A 

e ~ = (I~AI) - :  ~ (dr)• OA) (7) 
J~ A 

The same procedure we used to "measure"  the dynamical pressure can 
be applied also in the interior of the system. The idea is to insert as a mea- 
suring apparatus a potential field which separates the particles inside some 
subregion A' of A from those outside. We theoretically perform the limit in 
which the size of the inserted walls becomes negligibly small. The momentum 
transferred from the particles inside A' to the walls OA' is usually called the 
kinetic part of the pressure inside the system. It is in fact generally different 
from the actual pressure P a. The difference measures the force exerted by the 
particles outside A' on A' and it is usually related to the stress tensor of the 
system. (z) We remark that the above well-known procedure has a geometrical 
more than a physical meaning because it amounts to considering the size 
of  the elastic macroscopic walls ~A' much smaller than the range of the micro- 
scopic forces between particles. 

From a mathematical point of view, however, the above limit is perfectly 
defined. We introduce equations of motion as in Eq. (2) where we consider 
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also elastic collisions on OA'. The complete analog of Theorem 1.1 is obtained 
in the assumption of regularity for A'; a proof  is given in Section 2. The 
momentum transferred to ~ is measured by the function #a(t, x) defined as 
in Eq. (4), reading ~2 as a subregion of OA'. We then have the following 
result. 

Theorem 1.3. For every t /> 0 and every regular f~ ~ ~A' the function 
era(t, x) is t,A-integrable and there exists a function on A, P(r, A) not de- 
pending on A', such that 

t-l  fx d~^(x)#a(t, x) = fa (dr)• P(r' A) (8) 
A 

and 

fl-lP(r, A) = p(r, A) (9) 

Theorem 1.3 somehow extends the results of Theorem 1.2 by proving that 
proportionality between local density, temperature, and pressure holds in 
the whole system as far as the kinetic pressure is considered. 

As a consequence of the definition of the pressure pa  we gave via 
Theorem 1.2 (which directly related the thermodynamic pressure to the real 
external force acting on the system), we are able to derive a rigorous proof  
of the virial theorem of Clausius in its original [Eq. (10)] and in its modified 
[Eq. (11)] form. 

Theorem 1.4. Let A be regular, let p(r~, r~) be the two-particle correla- 
tion function; then 

s (dq)" qn(q)P(q, 0A) 

+ �89 f^2 dqldq2 p(q~, q2)(q2 - q l ) ( O / ~ q ~ ) ~ ( l q ~  - q2l) = - 2 ( T >  

f~A (dq)• OA) 

(lo) 

P t *  

+ �89 )oA (dql)),~ dq2p(ql, q2)(q2 - ql)(~/~ql)~o(lql - q2l) = - 2 < T >  (11) 

(T> is the mean kinetic energy. In the case the region A is a sphere 
P(r, ~A) = pa, by symmetry, so that, if v is the dimension of the space, 

f~ (dq)" qn(q)P(q, ~A) = pa v 
A 

which inserted into Eqs. (10) and (11) gives them their more usual form. 

An important well-known consequence of the previous definition of 
pressure as pa (other than the above derivation of the virial theorem) is the 
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quite simple interpretation of the equation of state for the system, as it 
relates surface to volume effects. In fact, since pd is determined by the 
density near the surface, an increase in the mean density at constant tem- 
perature is reflected in a variation of the pressure according to the way the 
local densities change: The regions of high compressibility are determined 
by situations in which the increase is realized largely in the neighborhood of 
the boundaries, while independence is apparent whenever the increase in 
density is localized far from the surface OA. 

In order to give full meaning both to the definition of pressure P a and 
to its consequences we have seen so far, we need to discuss its relationship 
with the equilibrium pressure .pea defined in Eq. (1). We would expect them 
to be equal, at least in the thermodynamic limit, and this will be the argument 
of the remaining part of this section. 

In order to study the thermodynamic limit for Pd(A), we avoid all the 
complications connected with the possible changes in shape of ~A by con- 
sidering the regions A to be spheres centered in the origin of ~ and invading 
the whole space. In this framework we obtained the following partial answer 
to the above problem. 

Theorem 1.5. Let v be the volume of the sphere A~; then: 

(i) Let pea = lim~,~ P eq(A~), 

f: P~q = lim v -1 dv 'Pa(Av , )  (12) 
v . - * m  

As a consequence, whenever the thermodynamic limit exists for Pd(Av), 
it equals peq. Further, there always exist opportune sequences of spheres 
A~ invading R ~ such that lim Pa(An)  = P~q. 

(ii) In the case our system is a gas of one-dimensional hard rods in R 
of length a with pair potential ~(r) given by 

f 
oo for O < ~ r ~ a  

q~(r)= C 2 for r /> a (13) 

there exist D and R0 such that I~0(r)l < Dr -~+~, r >t Ro, ~ > 0 

let A z = [0,/]; then 

lira Pa[(0, l)] = Peq 
l - -~  o0 

From Theorem 1.4 it appears that the real problem is to show the exis- 
tence of the thermodynamic limit for Pa(A) and this, by Theorem 1.2, 
corresponds to the study of the one-particle correlation function near the 
boundaries in the thermodynamic limit. In the case treated in Theorem 1.5(ii) 
the surface effects are fully described by a semiinfinite equilibrium measure 
as introduced and studied in Ref. 5. It would be interesting also in this respect, 
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therefore, to carry out analogous studies for very long-range forces. In this 
case a phase transition can be present and different equilibrium measures 
can exist at the same temperature and chemical potential. 

In Section 2 we give the proofs of the theorems presented in this section, 
and in the appendix we sketch the lines of the proof of Theorem 1.1. 

2. P R O O F S  

In Definitions 2.1-2.3 below we recall some well-known definitions and 
we establish notations needed in the sequel. 

Defini t ion 2.1. Let A be a bounded Lebesgue-measurable set in Rv; 
then the phase space XA and the grand-canonical Gibbs measure are defined 
a s  

XA = ( ' ~  (A x N') ~ denotes disjoint union (14) 
0 

oo 

~,^(dx) = ~ (n!) -1 d(q): .d(p)n e •  - n((q)~(p)~)]}ZX ~ (15) 
0 

( q ),, = ql "" q,~, (P),, = Pl  "" P,) 

d(q),~ ̂  = dq~ ... dq,) x^(qx)"" xA(q~) 

(x^ is the characteristic function of A) 

d(p)~ = dp~ ... dp~ 

n 

H((q)~(p)~)= (2m) -~ ~ , p 2  + �89 ~ ~0([q, - qA) = T[(p)~] + U[(q)~] 

~  
Z ^  = ~ : d(q)~^(n!)  -~ exp[-BU((q)n)l 

W n 

e = (21rmfl-1)'lae "u 

We will always consider regions A such that the boundaries are closures of a 
disjoint union of a finite number of open, regular (with continuous normal 
derivative) subregions. We require that the normal derivative never has 
discontinuities larger than zr/2. By A' it will be denoted a region strictly 
contained in A and at finite distance from ~A. 

Defini t ion 2.2. Let X~ ~ be the one-particle phase space: 

X~ x, = {~71~7 = (q,p), q ~ A,p ~ R') (16) 

In X(n x) the following surfaces will be considered: 

X = ~ t  u Y: (17) 
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where 

Zex t=  { ~  X(A:)[~ = (q ,p) ,  q e a ( A  - A')pA_^,(f ) > 0} 

Z'  = { ~  X(A1)]~ = (q ,p) ,  q~A' ,pA,(~: )  > 0} 

pa(~) = p.na(~), f = (q ,p )  (18) 

na(~:) = inward unit vector orthogonal to 0A in q ~ 0A (19) 

On Z we consider the measure a as 

~(d~) = (dq dp) • m-:p(~:) (20) 

where (dq dp) • is the orthogonal projection of (dq dp) on Z. 
By ~ we denote an open, continuous surface contained in ~A' or 

8(A - h ' ) .  

Definition 2.3. Let ~ ' (X^)  be the set of configurations for which no 
particle is in aA and a(A - A'). 

We assume Theorem 1.1 already proven. We refer to Ref. 4 for a de- 
tailed demonstration: In the appendix, we give the main ideas by actually 
proving the stronger statement Theorem A.1. 

I t  is convenient to introduce special notations for the sets of configura- 
tions of  interest in Theorems 1.2 and 1.3. This is done in the following 
definition. 

Definition 2.4. Let f~ be as in Definition 2.2; then 

X ~ = {x = (q)n(P)~ e XA] (i) Yt e ~ no more than one particle of 2( t )x  

is in f~, (ii) 3to /> 0, xo = (u, ~) = (q~176 such that S(to)Xo = x 

with u e J-(XA), ~ e f~} (21) 

For  x G X n we pose 

x = (Xo, t) = (u, s t) (22) 

where t is the minimum time for which the representation (22) holds. We 
pose 

~ n  = {x e X~a]x = (u, s O) : ~ ~ s u ~ 3"(X)A} (23) 

and we call it the f~-base of the flow S(t). The following function is defined 
on ~ a :  

~ ( x )  = min{t[S( t )x  ~ ~a ,  x c ~ a ,  t > 0) (24) 

Theorems 1.2 and 1.3 will be straightforward consequences of  the rep- 
resentation of the flow S(t)  given in the following theorem, which, in turn, 
is a corollary of Theorem A. 1. 

Theorem 2.1. We assume the pair potential ~ as in Definition 1.1 and 
the regions A and A' regular in the sense specified in Definition 2.l. Then 
the following hold: 
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(i) The  set X a is /~a-measurable and it has the same measure  as the set 
X c~ i.e., the configurations for  which at some time a particle hits the surface 
of  ~ .  

(ii) the measure/ZA restricted to X n has the expression 

/~A(dx) = va(dy ) ' d t  - I~A(dU)'a(d~)'dt" W(y ,  ~)0[~-a(y) - t] (25) 

where x = (u, ~, t)  was defined in Eq. (22); y = (u, f) E g a  in Eq. (23); 
T a in Eq. (24); and 

W ( y ,  ~:) = e x p { - f l I ( f ,  u) - f iT(  0 + ~l~} 

I ( f ,  u) = ~ q~([q~ - q]); f = (q, p )  (26) 
qtEU 

and O(s) = 0 i f s  < 0 and O(s) = 1 i f s  >/ O. The  function r n is va-measurable.  
(iii) The  t ranSformation S( t )  determines va-modulo zero a t ransformat ion  

T a on ~ a ,  

r a y  = S[~a(y ) ]y  (27) 

which preserves v a. 
(iv) As a consequence of  the above,  the dynamical  system ( X  a, tzA, S ( t ) )  

is represented as a flow under  the function ~-a on the base N a  with transfor-  
mat ion T a. 

Theorem 2.1 suggests tha t  we study the function zr(t, x) as a funct ion of  x 
for  every fixed t. Then the special form of/~a given in Eq. (25) will imply the 
desired linearity in t o f f  tz^(dx).~r(x, t).  In  order to carry out this p rogram,  it 
is convenient  to represent  the flow S( t )  on X a as a t ranslat ion upward  on 
~ a  x R +, by  identifying points  o f  the latter space as follows. 

Defini t ion 2.5. We pose 

-co(y) = O, r , ( y )  = "ra(T"- ly )  + r , - l ( y ) ,  n >>. 1, T a = T (28) 

~ ' .  = {(y, t) e M  a x R+lr._,(y) ~< t < r~(y)} (29) 

~b.: X a -+  .//r r  t)l  = (y",  t") (30a) 

T ~ - ~ y  ~ = y,  t ~ - ~n_~(y ~) = t (30b) 

r carries the measure  tZn on X a into the measure  t2~ on ~ ' ~  via 

fx t~(dx)f(x) = f A~[d(r162 fn[r  = f ( x )  (31) 
n 

We explicate Eq. (31), and use Eq. (25) and the invariance of  v a under  T ~ 
so that  by applying the Fubini  theorem we have 

fL,[d(y,  t)], = vn(dy) �9 dt .  X[Z,_ ~(y), r , ( y ) ] ( t )  (32) 

Xz is the characteristic funct ion of  the interval L 
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By Theorem 1.1 (i), ~) Jgn = &a x • § t~, modulo zero, so that the above 
1 

defines a measure/2 on ~ x R + s.t. /21r . = t2,lJ[ ,  and d/2 = dv".dt. 
In the next lemma we represent the function ~r(t, x) in ( ~ "  • R +, tl} 

and obtain an explicit expression for its integral. 

Lemma 2.1. To every positive measurable (possibly infinite) function f 
on &a x R § there corresponds a positive function h r on X a defined by 

such that 

h1(x ) = ~ f[~b.x] (33) 
1 

f~,• R § fL(dx)f(x) = fx ,  t~^(dx)hr(x) (34) 

In particular, ~r(f, x) is obtained as in Eq. (33) from the function 

f[(y, t)] = f[((u, ~:), t)] = 2pn(~)O(t - ~) (35) 

where Pn(~:) is defined in Eq. (18). Therefore ~r(t, x) is measurable and by 
Eq. (34) we have 

f dp,(x)Tr(i, x) = i f vta(dy) 2pn(~:), y = (u, ~:) (36) 
Jx 

Proof. Measurability of h~ and Eq. (34) are consequence of Fatou's 
lemma (see, for instance, Ref. 6, III.6.17). Measurability o f f  in Eq. (35) is 
derived by Fubini's theorem and measurability of Pn(~:) in v" and O(t - i) 
in dt. 

Proof of Theorems 1.2 and 1.3. Both theorems are now a direct conse- 
quence of Eq. (36). We write out explicitly v" as in Eqs. (25) and (26) so that 
we have from Eq. (36) 

t-1 f t,.(dx) ~.(t, x) 

= f/~a(du) f a(d~) 2p(~) exp{-fl[r(~)  - /~ + I(~, U)]} 

= f t.A(du) f. (dqy{f: dp exp[-fi(2m)-lp2] 2p2(m) -1 

- 1)~- 1/2) e x p -  flI(q, u) X (exp ~ ) ( 2 " m #  

_- fo 



310 E. Presutti 

so that the theorems are proved with 

f #^(dx) exp[-flI(r, x)] -- (fl)-lp(r, A) (37) P(r, A) Z ( f l )  - 1  

Proof of Theorem 1.4. Theorem 1.4 is derived by use of Lemma 2.1 in the 
classical proof of the virial theorem of Clausius as given by Milne (7~. Let 
x be a configuration for which dynamics is defined as in Theorem 1.1. 
We then write Eq. (1) for the particle qt ~ x at a time in which no particle is 
colliding on ~A. We multiply by qo sum over all the particles, integrate in 
time, for the time interval (0, t), assuming that at both times 0 and t no 
particle is hitting gA, and obtain 

- m  ~ ~ q~(t') A~(t') + �89 ~ (d/dt)(q~ ~) 
OCt'  ~<t tr ~ = 1 

- 2 dt" �89 = dt' F,(t')q,(t') (38) 
I = i  i = l  

where fr is defined below Eq. (4) and 

F,(t') = ~ (a/~qO~[lq,(t') - qs(t')]] 

The function ~(x, t), 

~b(x, t) = ~ ~ qi(t')A(h(t' ) 
o ~ t "  <<.t t e ~ A ( t ' )  

is the analog of zr(x, t), so that we can again apply Lemma 2.1, and the 
function corresponding to ~(x, t), as in Eq. (35), is 

g[(y, t)] = g[(u, ~), t] = 2p~A(~)q~^(~)O(t' - t) (39) 

We can therefore average Eq. (38) with respect to/zA. Using the invariance 
of/~^, we finally obtain Eq. (10) with 

: Z -1 ~ z~t(n - 2)!] -1 f dqa ... dq, e-Btr(qc"q, ' p(ql, qz) 
rim2 JAn-~ 

Equation (11) is derived similarly. It is just sufficient first to sum all the 
equations of motion for the different particles, so that the interparticle forces 
disappear. We then multiply by the position of the center of mass, integrate 
over t, and average with respect to/~^. 

Proof of Theorem 1.5. (i) Let s be the radius of the sphere A~ centered at the 
origin of R ~ and let v~ be its volume. Let Z~ = Z(A~); then 
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_ d d lnZ~ = ([8A~[)-:Z~-: ~ Z ~  
ds 

--- (lOAsI)-:Z~ -1 ~ (n!)-:z"n d(q),~_: 
1 n As)n- 1 

x exp{-flU[(q)._:]} f (dr)' exp{-flI(r, (q)._:)} 
Jo As 

= ([~Asl)-:z (dr) • z~(n!) -: 
11 

A s 0 

x [ d(q). exp(-/3U[(q)~] - flI(r, (q).)}Z~- : 
J( As) a 

--([~A,I)- :z ~,^~ (dr)' ~xA dtZs(x)exp[--flZ(r,x)] 

= (l~h~l)-: f (dr)• As) = flPa(hs) (40) 
J~ As 

To obtain Eq. (40), we used the stability of the interaction, Definition 1.1, to 
ensure uniform convergence of the series. From Eq. (40) we have 

(v)-: dr" P"(Av, ) = (fly)-: lnZv ~ P~q (41) 

so that (i) is proved using the continuity of Pe(A~) on v. 
(ii) The considerations leading to Theorem 1.2 can be rephrased with 

minor modifications in the case the particle are hard rods. The point is that 
the analog of Theorem A. 1 can be similarly proved by constructing the base 
of the special flow as the surface of the phase space union of ~ and of that 
region in which more rods are contiguous. Therefore we assume without 
proof that the analog of Eq. (37) holds, so that with the notations AL = 
[0, L] and A' = AL we obtain for PAaL 

= (fl)-:z f /ZAL(dX ) exp[-flI(O, 1% x)] 
J,, XA L 

Lemma 9 of Ref. 5 allows us to perform the thermodynamic limit for L --->oo 
in Eq. (40) so that 

lira PAaL = pa = fl-:z f v(dx) exp[-flI(0, x)] (42) 
L-~co J X ( R  + ) 

where the measure,  is defined in Lemma 1 of Ref. 5 and represents the semi- 
infinite thermodynamic limit of Gibbs measures. The important point for 
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our purposes is that the following property holds for v (Lemma 9, 
Ref. 5): 

o o  

exp(/3rPeq) = ~o" (n!)-lz" f d(q). exp{-[3U[(q).]} 
,J(-r,O)n 

x ( v(dx) exp{-flI[(q)., x]} (43) 
J X  (R + ) 

Therefore by Eqs. (42) and (43) 

flP~q = lim r -~ ~, (n!) -~ d(q)~ exp{-flU[(q)~]} 
r ~ O  I n r ,O)  n 

x ~x(~+)(dx) exp{-flI[(q)., x]} 

= lim r- lz  I ~ dq f v(dx) exp{-flI(q, x)} 
r--+O J - r  Jx(~+) 

= z ( v(dx) exp[-flI(0,  x)] 
J X  (R+) 

= f lPa 

A P P E N D I X  

Here we sketch the proof of Theorem 1.1. In the proof a special rep- 
resentation of the time evolution flow is introduced and as a corollary 
Theorem 2.1 is also obtained. A detailed analysis can be found in Ref. 4. 
We first introduce some notations and then we shall give the theorem. 

Definition A.1. For any configuration in Y(XA) (Definition 2.3), there 
exists a time interval ( - t ' ,  t"), t', t" > 0, such that a time evolution S~ is 
determined as a solution of Eqs. (1) and (2) with no particles colliding on 
OA' and ~(A - A'). This naturally splits XA into three sets: 

X z = {(q).(p). ~#-(X^)l~t > 0, (q0).(pO).: SO(t) is defined on 

(q0).(pO). and S~176176 = (q).(p).} (A.1) 

(q0).(po). = (u, f), u ~ #-(XA), ~ ~ Y~ 

X ~ = {(q).(p).lS~ is defined on (q).(p)~ for every t ~ R} (A.2) 

= complement in X^ of X z w X ~ (A.3) 
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As in Eqs. (23) and (24), we describe X z giving its base Mz and the function 
�9 " so that if x s X", then 

x = (y, t), t < ~ ( y ) ,  S ~  = x (A.4a) 

y = (u, ~:), u ~ J ' (X^) ,  ~: G Y, (A.4b) 

Theorem A.1. Let the pair interaction be defined as in Definition 1.1, 
and the regions A and A' be regular in the sense of  Definition 2.1 ; then 

(i) The sets X z, X ~ .~ are tza-measurable and t~a(-~) = 0. 
(ii) The function zz is measurable with respect to the measure /~A X 

on ~'~' and if/~A denotes the restriction of PA to X z, we have 

t~A(dx) = v" dt - izA(du).cr(d~) dt W ( y ,  ~:)0[rZ(y) - t] (A.5) 

where W, / ,  and 0 are defined as in Eq. (25). 
(iii) Let S ~  = TZy be identified with the elastically reflected 

configuration. Then in the complement with respect to Mz of a set of null 
measure T z and all its powers are v" measure-preserving transformations 
of  N" onto itself. 

(iv) Let 
c o  

~V" = {y e ~ z l ~ ,  r[(T~')"-:y] < +oo} (A.6) 

then v~'(./V) = 0, so that the transformation T z determines a tza-preserving 
flow SZ(t)  of X ~' onto itself represented as a transformation T ~ on Mz under 
the function rz. 

Proof.  In Ref. 4 a connected surface is studied; however, in that p roof  
such a hypothesis is actually never used, so that it applies directly to our 
case. Therefore here we only recall the main arguments. 

Measurability of  X z follows from the topological properties of  the flow 
S~  together with the regularity of Z and of the measure IzA in the topological 
space XA. By the same arguments it is proven that ~-z is measurable. Equation 
(A.5) is then derived from the invariance oftz^ on S~ (4,8) and at the same 
time it is proven that/z^()~) = 0. 

At this point T z can be defined and (iii) is proven as a consequence of 
the explicit construction of v ~ together with the fact that the transformation 
which identifies a configuration in S~ z with the elastically reflected 
one is measure-preserving. 

Finally, use of  the Poincar6 recurrence theorem (9) gives (iv) as a 
consequence of  (iii) and of the measurability of  ~.z. 
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